jueves, 5 de noviembre de 2015

GASTO VOLUMETRICO
El caudal volumétrico o tasa de flujo de fluidos es el volumen de fluido que pasa por una superficie dada en un tiempo determinado. Usualmente es representado con la letra Q mayúscula.
Algunos ejemplos de medidas de caudal volumétrico son: los metros cúbicos por segundo (m3/s, en unidades básicas del Sistema Internacional) y el pie cúbico por segundo (cu ft/s en el sistema inglés de medidas).



Dada un área A, sobre la cual fluye un fluido a una velocidad uniforme v con un ángulo \theta desde la dirección perpendicular a A, la tasa del caudal volumétrico es:
 Q = A \cdot v \cdot \cos \theta
En el caso de que el caudal sea perpendicular al área A, es decir, \theta = 0, la tasa del flujo volumétrico es:1
 Q = A   \cdot v

EL GASTO VOLUMETRICO O FLUJO VOLUMETRICO ES EL GASTO EN VOLUMEN POR UNIDAD DE TIEMPO, POR EJEMPLO 4 LITROS/SEGUNDO 

EL GASTO MASICO O FLUJO DE MASA ES EL GASTO EN UNIDADES DE MASA POR UNIDAD DE TIEMPO POR EJEMPLIO 4 KILOGRAMOS/SEGUNDO 7 LIBRAS/SEGUNDO
es la cantidad de volumen de un fluido que pasa por un área determinada 

Gasto másico es la cantidad de masa de un fluido que pasa por un área determinada 
MEDICIÓN DE GASTO VOLUMETRICO


Se acepta que el flujo volumétrico significa el volumen de un medio que se mueve a través de una sección transversal dentro de un período de tiempo dado.
 


Q: flujo volumétrico en [m³/s], [l/min], [m³/h]
V: volumen en [cm³], [dm³], [m³]
t: tiempo en [s], [min], [h],



Velocidad de flujo en un tubo

La siguiente relación aplica adicionalmente a líquidos y gases:



V: flujo volumétrico en [m³/s]  
c : velocidad de flujo media en [m/s]
A : sección transversal en el punto pertinente en [m²]

Donde se conoce la superficie de la sección transversal (tubos, canales) se puede usar esta fórmula para calcular el flujo volumétrico, siempre que se mida la velocidad del flujo.
Como la velocidad de flujo a través de una sección transversal no es constante (véase la representación), la velocidad de flujo media c se determina por integración (véase cálculo integral):


 
C: velocidad en un punto de la sección transversal (función del emplazamiento => f(xy) si la dirección del flujo es = z)
FORMULAS PARA CALCULAR EL GASTO VOLUMETRICO








PROBLEMAS DE GASTO VOLUMETRICO













TEOREMA DE BERNOULLI Y SUS APLICACIONES

El principio de Bernoulli, también denominado ecuación de Bernoulli o Trinomio de Bernoulli, describe el comportamiento de un fluido en reposo moviéndose a lo largo de una corriente de agua. Fue expuesto por Daniel Bernoulli en su obra Hidrodinámica (1738) y expresa que en un fluido ideal (sin viscosidad ni rozamiento) en régimen de circulación por un conducto cerrado, la energía que posee el fluido permanece constante a lo largo de su recorrido. La energía de un fluido en cualquier momento consta de tres componentes:

  1. Cinética: es la energía debida a la velocidad que posea el fluido.

  2. Potencial gravitacional: es la energía debido a la altitud que un fluido posea.

  3. Energía de flujo: es la energía que un fluido contiene debido a la presión que posee.

El teorema de Bernoulli es un caso particular que precisa la aproximación frecuencial de un suceso a la probabilidad p de que este ocurra a medida que se va repitiendo el experimento.
Dados un suceso A, su probabilidad p de ocurrencia, y n pruebas independientes para determinar la ocurrencia o no-ocurrencia de A.
Sea f el número de veces que se presenta A en los n ensayos y \varepsilon un número positivo cualquiera, la probabilidad de que la frecuencia relativa f/n discrepe de p en más de \varepsilon (en valor absoluto) tiende a cero al tender n a ∞. Es decir:
\lim_{n \rightarrow \infty}{\rho\left(\left|\frac{f}{n}-p\right|>\varepsilon \right)} = 0


El principio de Bernoulli, también denominado ecuación de Bernoulli o trinomio de Bernoulli, describe el comportamiento de un fluido moviéndose a lo largo de una corriente de agua. Fue expuesto por Daniel Bernoulli en su obra Hidrodinámica (1737) y expresa que en un fluido ideal (sin viscosidad ni rozamiento) en régimen de circulación por un conducto cerrado, la energía que posee el fluido permanece constante a lo largo de su recorrido.


Para aplicar la ecuación se deben realizar los siguientes supuestos:

  • Viscosidad (fricción interna) = 0 Es decir, se considera que la línea de corriente sobre la cual se aplica se encuentra en una zona ‘no viscosa’ del fluido.

  • Caudal constante

  • Flujo incompresible, donde ρ es constante.

  • La ecuación se aplica a lo largo de una línea de corriente o en un flujo rotacional

Aunque el nombre de la ecuación se debe a Bernoulli, la forma arriba expuesta fue presentada en primer lugar por Leonhard Euler.

Un ejemplo de aplicación del principio lo encontramos en el flujo de agua en tubería.

Cada uno de los términos de esta ecuación tiene unidades de longitud, y a la vez representan formas distintas de energía; en hidráulica es común expresar la energía en términos de longitud, y se habla de altura o cabezal, esta última traducción del inglés head. Así en la ecuación de Bernoulli los términos suelen llamarse alturas o cabezales de velocidad, de presión y cabezal hidráulico, del inglés hydraulic head; el término z se suele agrupar con P/\gamma (donde \gamma = \rho  g ) para dar lugar a la llamada altura piezo métrica o también carga piezométrica.[editar]Características y consecuencia

 \overbrace{{V^2 \over 2 g}}^{\mbox{cabezal de velocidad}}+\overbrace{\underbrace{\frac{P}{\gamma}}_{\mbox{cabezal de presión}} + z}^{\mbox{altura o carga piezométrica}} = \overbrace{H}^{\mbox{Cabezal o Altura hidráulica}}

También podemos reescribir este principio en forma de suma de presiones multiplicando toda la ecuación por \gamma, de esta forma el término relativo a la velocidad se llamará presión dinámica, los términos de presión y altura se agrupan en la presión estática.


Aplicaciones del Principio de Bernoulli

Chimenea
Las chimeneas son altas para aprovechar que la velocidad del viento es más constante y elevada a mayores alturas. Cuanto más rápidamente sopla el viento sobre la boca de una chimenea, más baja es la presión y mayo

 

Tubería

La ecuación de Bernoulli y la ecuación de continuidad también nos dicen que si reducimos el área transversal de una tubería para que aumente la velocidad del fluido que pasa por ella, se reducirá la presión.  es la diferencia de presión entre la base y la boca de la chimenea, en consecuencia, los gases de combustión se extraen mejor.

Natación
La aplicación dentro de este deporte se ve reflejado directamente cuando las manos del nadador cortan el agua generando una menor presión y mayor propulsión.

Carburador de automóvil
En un carburador de automóvil, la presión del aire que pasa a través del cuerpo del carburador, disminuye cuando pasa por un estrangulamiento. Al disminuir la presión, la gasolina fluye, se vaporiza y se mezcla con la corriente de aire.

Resultado de imagen para teorema de bernoulli

Flujo de fluido desde un tanque
La tasa de flujo está dada por la ecuación de Bernoulli.

Dispositivos de Venturi
En oxigeno terapia  la mayor parte de sistemas de suministro de débito alto utilizan dispositivos de tipo Venturi, el cual esta basado en el principio de Bernoulli.

Aviación
Los aviones tienen el extradós (parte superior del ala o plano) más curvado que el intradós (parte inferior del ala o plano). Esto causa que la masa superior de aire, al aumentar su velocidad, disminuya su presión, creando así una succión que ayuda a sustentar la aeronave.

FORMULAS DEL TEOREMA DE BERNOULLI




La ecuación de Bernoulli[editar]

La energía de un fluido en cualquier momento consta de tres componentes:
  • cinética: es la energía debida a la velocidad que posea el fluido;
  • potencial o gravitacional: es la energía debido a la altitud que un fluido posea;
  • energía de presión: es la energía que un fluido contiene debido a la presión que posee.
La siguiente ecuación conocida como "ecuación de Bernoulli" (trinomio de Bernoulli) consta de estos mismos términos.
\frac{V^2 \rho}{2}+{P}+{\rho g z}= \text{constante}
donde:
Para aplicar la ecuación se deben realizar los siguientes supuestos:
  • Viscosidad (fricción interna) = 0 Es decir, se considera que la línea de corriente sobre la cual se aplica se encuentra en una zona 'no viscosa' del fluido.
  • Caudal constante
  • Flujo incompresible, donde ρ es constante.
  • La ecuación se aplica a lo largo de una línea de corriente o en un flujo laminar.
Aunque el nombre de la ecuación se debe a Bernoulli, la forma arriba expuesta fue presentada en primer lugar por Leonhard Euler.
Un ejemplo de aplicación del principio se da en el flujo de agua en tubería.
 \overbrace{{V^2 \over 2 g}}^{\mbox{cabezal de velocidad}}+\overbrace{\underbrace{\frac{P}{\gamma}}_{\mbox{cabezal de presión}} + z}^{\mbox{altura o carga piezométrica}} = \overbrace{H}^{\mbox{Cabezal o Altura hidráulica}}
También se puede reescribir este principio en forma de suma de presiones multiplicando toda la ecuación por \gamma, de esta forma el término relativo a la velocidad se llamará presión dinámica, los términos de presión y altura se agrupan en la presión estática.

Esquema del efecto Venturi.
 \underbrace{\frac{\rho V^2}{2}}_{\mbox{presión dinámica}}+\overbrace{P+ \gamma z}^{\mbox{presión estática}}=\text{constante}
o escrita de otra manera más sencilla:
q+p=p_0
donde
  • q=\frac{\rho V^2}{2}
  • p=P+ \gamma z
  • p_0 es una constante-
Igualmente podemos escribir la misma ecuación como la suma de la energía cinética, la energía de flujo y la energía potencial gravitatoria por unidad de masa:
\overbrace{\frac{{V}^2}{2}}^{\mbox{energía cinética}}+\underbrace{\frac{P}{\rho}}_{\mbox{energía de flujo}}+\overbrace{g z}^{\mbox{energía potencial}} = \text{constante}
En una línea de corriente cada tipo de energía puede subir o disminuir en virtud de la disminución o el aumento de las otras dos. Pese a que el principio de Bernoulli puede ser visto como otra forma de la ley de la conservación de la energía realmente se deriva de la conservación de la Cantidad de movimiento.
Esta ecuación permite explicar fenómenos como el efecto Venturi, ya que la aceleración de cualquier fluido en un camino equipotencial (con igual energía potencial) implicaría una disminución de la presión. Este efecto explica porqué las cosas ligeras muchas veces tienden a salirse de un automóvil en movimiento cuando se abren las ventanas. La presión del aire es menor fuera debido a que está en movimiento respecto a aquél que se encuentra dentro, donde la presión es necesariamente mayor. De forma, aparentemente, contradictoria el aire entra al vehículo pero esto ocurre por fenómenos de turbulencia y capa límite.

Ecuación de Bernoulli con fricción y trabajo externo[editar]

La ecuación de Bernoulli es aplicable a fluidos no viscosos, incompresibles en los que no existe aportación de trabajo exterior, por ejemplo mediante una bomba, ni extracción de trabajo exterior, por ejemplo mediante una turbina. De todas formas, a partir de la conservación de la Cantidad de movimiento para fluidos incompresibles se puede escribir una forma más general que tiene en cuenta fricción y trabajo:
\frac{{V_1}^2}{2 g}+\frac{P_1}{\gamma}+z_1 + W = h_f + \frac{{V_2}^2}{2 g}+\frac{P_2}{\gamma}+z_2

donde:
  • \gamma es el peso específico (\gamma=\rho g). Este valor se asume constante a través del recorrido al ser un fluido incompresible.
  • W trabajo externo que se le suministra (+) o extrae al fluido (-) por unidad de caudal másico a través del recorrido del fluido.
  • h_f disipación por fricción a través del recorrido del fluido.
  • Los subíndices 1 y 2 indican si los valores están dados para el comienzo o el final del volumen de control respectivamente.
  • g = 9,81 m/s2.
Resultado de imagen para teorema de bernoulli


ECUACIÓN DE CONTINUIDAD


En física, una ecuación de continuidad expresa una ley de conservación de forma matemática, ya sea de forma integral como de forma diferencial.

En teoría electromagnética, la ecuación de continuidad viene derivada de dos de las ecuaciones de Maxwell. Establece que la divergencia de la densidad de corriente es igual al negativo de la derivada de la densidad de carga respecto del tiempo:

En otras palabras, sólo podrá haber un flujo de corriente si la cantidad de carga varía con el paso del tiempo, ya que esta disminuye o aumenta en proporción a la carga que es usada para alimentar dicha corriente.

La ecuación de continuidad

La conservación de la masa de fluido a través de dos secciones (sean éstas A1 y A2) de un conducto (tubería) o tubo de corriente establece que: la masa que entra es igual a la masa que sale.
Definición de tubo de corriente: superficie formada por las líneas de corriente.
Corolario 2: solo hay flujo de corriente si V es diferente de 0.
FORMULAS
La ecuación de continuidad se puede expresar como:
\rho_1 . A_1 . V_1 = \rho_2 . A_2 . V_2
Cuando \rho_1  = \rho_2 , que es el caso general tratándose de agua, y flujo en régimen permanente, se tiene:
\ A_1 . V_1 =  A_2 . V_2
o de otra forma:
\ Q_1  =  Q_2   (el caudal que entra es igual al que sale)
Donde:
Que se cumple cuando entre dos secciones de la conducción no se acumula masa, es decir, siempre que el fluido sea incompresible y por lo tanto su densidad sea constante. Esta condición la satisfacen todos los líquidos y, particularmente, el agua.
En general la geometría del conducto es conocida, por lo que el problema se reduce a estimar la velocidad media del fluido en una sección dada.


2.- TEOREMA DE TORRICELI

El teorema de Torricelli o principio de Torricelli es una aplicación del principio de Bernoulli y estudia el flujo de un líquido contenido en un recipiente, a través de un pequeño orificio, bajo la acción de la gravedad.
La velocidad de un líquido en una vasija abierta, por un orificio, es la que tendría un cuerpo cualquiera, cayendo libremente en el vacío desde el nivel del líquido hasta el centro de gravedad del orificio.
 

Faenza, actual Italia, 1608-Florencia, 1647) Físico y matemático italiano. Se atribuye a Evangelista Torricelli la invención del barómetro. Asimismo, sus aportaciones a la geometría fueron determinantes en el desarrollo del cálculo integral.
Su tratado sobre mecánica De mutu (Acerca del movimiento), logró impresionar a Galileo, en quien el propio Torricelli se había inspirado a la hora de redactar la obra. En 1641 recibió una invitación para actuar como asistente de un ya anciano Galileo en Florencia, durante los que fueron los tres últimos meses de vida del célebre astrónomo de Pisa.


A la muerte de Galileo, Torricelli fue nombrado profesor de matemáticas de la Academia Florentina. Dos años más tarde, atendiendo una sugerencia formulada por Galileo, llenó con mercurio un tubo de vidrio de 1,2 m de longitud, y lo invirtió sobre un plato; comprobó entonces que el mercurio no se escapaba, y observó que en el espacio existente por encima del metal se creaba el vacío.
Tras muchas observaciones, concluyó que las variaciones en la altura de la columna de mercurio se deben a cambios en la presión atmosférica. Nunca llegó a publicar estas conclusiones, dado que se entregó de lleno al estudio de la matemática pura, incluyendo en su labor cálculos sobre la cicloide y otras figuras geométricas complejas.
En su título Opera geometrica, publicado en 1644, expuso también sus hallazgos sobre fenómenos de mecánica de fluidos y sobre el movimiento de proyectiles.
Teorema de Torricelli
La velocidad del chorro que sale por un único agujero en un recipiente es directamente proporcional a la raíz cuadrada de dos veces el valor de la aceleración de la gravedad multiplicada por la altura a la que se encuentra el nivel del fluido a partir del agujero.
Matemáticamente se tiene:
v = raíz cuadrada ((2 * g) * (h))
Ejemplo de aplicación del teorema de Torricelli (vaciado de un recipiente):
Un depósito cilíndrico, de sección S1 tiene un orificio muy pequeño en el fondo de sección S2 mucho más pequeña que S1 :
Aplicamos el teorema de Bernoulli suponiendo que lavelocidad del fluido en la sección mayor ,
 
Aplicamos el teorema de Bernoulli suponiendio que la velocidad del fluido en la sección s1 es despreciable, v1 es más o menos 0 comparada con la velocidad del fluido v2 en la sección menor s2.
Por otra parte , el elemento de fluído delimitado por las secciones S1 y S2 esta en contacto con el aire a la misma presión, luego p1=p2=p0.
Finalmente, la diferencia entre alturas y1- y2 = H. siendo H la altura de la columna del fluído.
La ecuación de BErnoulli:
Formulas para el teorema de Torricelli

Con los datos del problema se escribirá de una formamás simple:

donde:
  •  \ V_r  es la velocidad real media del líquido a la salida del orificio
  •  \ C_v  es el coeficiente de velocidad. Para cálculos preliminares en aberturas de pared delgada puede admitirse 0,95 en el caso más desfavorable.
tomando  \ C_v  =1
V_r = \sqrt{{2\cdot g\cdot h }}
Experimentalmente se ha comprobado que la velocidad media de un chorro de un orificio de pared delgada, es un poco menor que la ideal, debido a la viscosidaddel fluido y otros factores tales como la tensión superficial, de ahí el significado de este coeficiente de velocidad.

Caudal descargado[editar]

El caudal o volumen del fluido que pasa por el orificio en un tiempo, \ Q, puede calcularse como el producto de \ S_c, el área real de la sección contraída, por \ V_r, la velocidad real media del fluido que pasa por esa sección, y por consiguiente se puede escribir la siguiente ecuación:
Q = S_c\cdot V_r = (S\cdot C_c)C_v\sqrt{{2\cdot g\cdot h}}
Q = C_d\cdot S\sqrt{{2\cdot g\cdot h}}
en donde
  • S\sqrt{{2\cdot g\cdot h}} representa la descarga ideal que habría ocurrido si no estuvieran presentes la fricción y la contracción.
  • \ C_c es el coeficiente de contracción de la vena fluida a la salida del orificio. Su significado radica en el cambio brusco de sentido que deben realizar las partículas de la pared interior próximas al orificio. Es la relación entre el área contraída \ S_c y la del orificio \ S. Suele estar en torno a 0,65.
  • \ C_d es el coeficiente por el cual el valor ideal de descarga es multiplicado para obtener el valor real, y se conoce como coeficiente de descarga. Numéricamente es igual al producto de los otros dos coeficientes. \ C_d=C_c C_v
El coeficiente de descarga variará con la carga y el diámetro del orificio. Sus valores para el agua han sido determinados y tabulados por numerosos experimentadores. De forma orientativa se pueden tomar valores sobre 0,6. Así se puede apreciar la importancia del uso de estos coeficientes para obtener unos resultados de caudal aceptables.
PROBLEMAS RESUELTOS DE EL TEOREMA DE TORRICELLI








3.-  TEMPERATURA


La temperatura es una magnitud referida a las nociones comunes de calor medible mediante un termómetro. En física, se define como una magnitud escalar relacionada con la energía interna de un sistema termodinámico, definida por el principio cero de la termodinámica. Más específicamente, está relacionada directamente con la parte de la energía interna conocida como «energía cinética», que es la energía asociada a los movimientos de las partículas del sistema, sea en un sentido traslacional, rotacional, o en forma devibraciones. A medida de que sea mayor la energía cinética de un sistema, se observa que éste se encuentra más «caliente»; es decir, que su temperatura es mayor.


En el caso de un sólido, los movimientos en cuestión resultan ser las vibraciones de las partículas en sus sitios dentro del sólido. En el caso de un gas ideal monoatómico se trata de los movimientos traslacionales de sus partículas (para los gases multiatómicos los movimientos rotacional y vibracional deben tomarse en cuenta también).
El desarrollo de técnicas para la medición de la temperatura ha pasado por un largo proceso histórico, ya que es necesario darle un valor numérico a una idea intuitiva como es lo frío o lo caliente.
Multitud de propiedades fisicoquímicas de los materiales o las sustancias varían en función de la temperatura a la que se encuentren, como por ejemplo su estado (sólidolíquidogaseosoplasma), su volumen, lasolubilidad, la presión de vapor, su color o la conductividad eléctrica. Así mismo es uno de los factores que influyen en la velocidad a la que tienen lugar las reacciones químicas.

La temperatura se mide con termómetros, los cuales pueden ser calibrados de acuerdo a una multitud de escalas que dan lugar a unidades de medición de la temperatura. En el Sistema Internacional de Unidades, la unidad de temperatura es el kelvin (K), y la escala correspondiente es la escala Kelvin o escala absoluta, que asocia el valor «cero kelvin» (0 K) al «cero absoluto», y se gradúa con un tamaño de grado igual al del grado Celsius. Sin embargo, fuera del ámbito científico el uso de otras escalas de temperatura es común. La escala más extendida es la escala Celsius, llamada «centígrada»; y, en mucha menor medida, y prácticamente solo en los Estados Unidos, la escala Fahrenheit. También se usa a veces la escala Rankine (°R) que establece su punto de referencia en el mismo punto de la escalaKelvin, el cero absoluto, pero con un tamaño de grado igual al de la Fahrenheit, y es usada únicamente en Estados Unidos, y solo en algunos campos de laingeniería. Sin embargo, debería utilizarse el Julio puesto que la temperatura no es más que una medida de la energía cinética media de un sistema, de esta manera podríamos prescindir de la constante de Boltzmann.

FORMULAS PARA CALCULAR LA TEMPEREATURA




De Fahrenheit a Celsius
De Fahrenheit a Celsius
 
De Celsius a Fahrenheit
De Celsius a Fahrenheit
 
De Kelvin a Celsius
De Kelvin a Celsius
 
De Celsius a Kelvin
De Celsius a Kelvin
 
De Kelvin a Fahrenheit
De Kelvin a Fahrenheit
 
De Fahrenheit a Kelvin
De Fahrenheit a Kelvin
 
De Rankine a Fahrenheit
De Rankine a Fahrenheit
 
De Fahrenheit a Rankine
De Fahrenheit a Rankine
 
De Réaumur a Celsius
De Réaumur a  Celsius
 
De Rankine a Kelvin
De Rankine a Kelvin
 
De Rankine a Celsius
De Rankine a Celsius
 
De Celsius a Rankine
De Celsius a Rankine
 
De Celsius a Réaumur
De Celsius a Réaumur
 
De Kelvin a Rankine
De Kelvin a Rankine
 
De Fahrenheit a Réaumur
De Fahrenheit a Réaumur
 
De Réaumur a Fahrenheit
De Réaumur a Fahrenheit
 
De Kelvin a Réaumur
De Kelvin a Réaumur
 
De Réaumur a Kelvin
De Réaumur a Kelvin
 
De Rankine a Réaumur
De Rankine a Réaumur
 
De Réaumur a Rankine
De Réaumur a Rankine

 
PROBLEMAS RESUELTOS



ESCALAS TERMOMÉTRICAS
La termometría se encarga de la medición de la temperatura de cuerpos o sistemas. Para este fin, se utiliza el termómetro, que es un instrumento que se basa en el cambio de alguna propiedad de la materia debido al efecto del calor; así se tiene el termómetro de mercurio y de alcohol, que se basan en la dilatación, los termopares que deben su funcionamiento al cambio de la conductividad eléctrica, los ópticos que detectan la variación de la intensidad del rayo emitido cuando se refleja en un cuerpo caliente.

Para poder construir el termómetro se utiliza el Principio Cero de la Termodinámica que dice: "Si un sistema A que está en equilibrio térmico con un sistema B, está en equilibrio térmico también con un sistema C, entonces los tres sistemas A, B y C están en equilibrio térmico entre sí".




Se denomina sistema a cualquier conjunto de materia limitado por una superficie real o imaginaria. Todo aquello que no pertenece al sistema pero que puede influir en él se denomina medio ambiente.
Se puede definir el calor como la energía transmitida hacia o desde un sistema, como resultado de una diferencia de temperaturas entre el sistema y su medio ambiente. Así como se define un sistema aislado o sistema cerrado como un sistema en el que no entra ni sale materia, un sistema aislado térmicamente o S.A.T.se define como un sistema en el que no entra ni sale calor. Un ejemplo clásico que simula un sistema aislado térmicamente es un termo que contiene agua caliente, dado que el agua no recibe ni entrega calor al medio ambiente.
Una propiedad importantes de un S.A.T. es que, dentro de él, la temperatura siempre se mantiene constante después de transcurrido un tiempo suficientemente largo. Si dentro del S.A.T. hay más de una temperatura, al cabo de dicho tiempo, el S.A.T. tendrá sólo una temperatura llamada temperatura de equilibrio, y se dirá entonces que el sistema llegó al equilibrio térmico. En general, un sistema está en equilibrio térmico cuando todos los puntos del sistema se hallan a la misma temperatura, o dicho de otra forma, cuando las propiedades físicas del sistema que varían con la temperatura no varían con el tiempo.

Resultado de imagen para ESCALA TERMOMETRICA

4.-DILATACIÓN
El término dilatación puede referirse:

  • Se denomina dilatación térmica al aumento de longitudvolumen o alguna otra dimensión métrica que sufre un cuerpo físico debido al aumento de temperatura que se provoca en él por cualquier medio. La contracción térmica es la disminución de propiedades métricas por disminución de la misma.
Resultado de imagen para dilatación en fisica

Dilatación lineal[editar]

Es aquella en la cual predomina la variación en una única dimensión, o sea, en el ancho, largo o altura del cuerpo. El coeficiente de dilatación lineal, designado por αL, para una dimensión lineal cualquiera, se puede medir experimentalmente comparando el valor de dicha magnitud antes y después:
\alpha_L = \frac {1} {L} \left ( \frac {dL} {dT} \right )_P =
\left ( \frac {d \ln L} {dT} \right )_P \approx \frac {1} {L} \left ( \frac {\Delta \ L} {\Delta \ T} \right )_P.
Donde \Delta L, es el incremento de su integridad física cuando se aplica un pequeño cambio global y uniforme de temperatura \Delta T a todo el cuerpo. El cambio total de longitud de la dimensión lineal que se considere, puede despejarse de la ecuación anterior:
L_f = L_0 [1 +\alpha_L (T_f - T_0)]\;
Donde:
α=coeficiente de dilatación lineal [°C-1]
L0 = Longitud inicial
Lf = Longitud final
T0 = Temperatura inicial.
Tf = Temperatura final

Dilatación volumétrica[editar]


Es el coeficiente de dilatación volumétrico, designado por αV, se mide experimentalmente comparando el valor del volumen total de un cuerpo antes y después de cierto cambio de temperatura como, y se encuentra que en primera aproximación viene dado por:
Experimentalmente se encuentra que un sólido isótropo tiene un coeficiente de dilatación volumétrico que es aproximadamente tres veces el coeficiente de dilatación lineal. Esto puede probarse a partir de la teoría de la elasticidad lineal. Por ejemplo si se considera un pequeño prisma rectangular (de dimensiones: LxLy y Lz), y se somete a un incremento uniforme de temperatura, el cambio de volumen vendrá dado por el cambio de dimensiones lineales en cada dirección:
\begin{matrix}
\Delta V = V_f - V_0 = & 
((1+\alpha_L\Delta T)L_x\cdot (1+\alpha_L\Delta T)L_y\cdot (1+\alpha_L\Delta T)L_z)- L_xL_yL_z= \\
& = (3\alpha_L\Delta T+ 3\alpha_L^2\Delta T^2+ \alpha_L^3\Delta T^3)(L_xL_yL_z)
\approx 3\alpha_L\Delta T V_0 \end{matrix}
Esta última relación prueba que \scriptstyle \alpha_V\ \approx\ 3 \alpha_L, es decir, el coeficiente de dilatación volumétrico es numéricamente unas 3 veces el coeficiente de dilatación lineal de una barra del mismo material.

Dilatación de área[editar]

Cuando un área o superficie se dilata, lo hace incrementando sus dimensiones en la misma proporción. Por ejemplo, una lámina metálica aumenta su largo y ancho, lo que significa un incremento de área. La dilatación de área se diferencia de la dilatación lineal porque implica un incremento de área.
El coeficiente de dilatación de área es el incremento de área que experimenta un cuerpo de determinada sustancia, de área igual a la unidad, al elevarse su temperatura un grado centígrado. Este coeficiente se representa con la letra griega gamma (γ). El coeficiente de dilatación de área se usa para los sólidos. Si se conoce el coeficiente de dilatación lineal de un sólido, su coeficiente de dilatación de área será dos veces mayor:
\gamma_A \approx 2 \alpha
Al conocer el coeficiente de dilatación de área de un cuerpo sólido se puede calcular el área final que tendrá al variar su temperatura con la siguiente expresión:
A_f = A_0 [1 +\gamma_A (T_f - T_0)]\;
Donde:
γ=coeficiente de dilatación de área [°C-1]
A0 = Área inicial
Af = Área final
T0 = Temperatura inicial.
Tf = Temperatura final
Problemas De 
Dilatación











No hay comentarios:

Publicar un comentario